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Evaporating Extended Meniscus in a V-Shaped Channel

L. W. Swanson* and G. P. Petersont
Texas A&M University, College Station, Texas 77843

A mathematical model of the evaporating extended meniscus in a V-shaped channel was developed to inves-
tigate the effect of wedge half-angle and vapor mass transfer on meniscus morphology, fluid flow, and heat
transfer. The liquid was unsaturated, flowed down the wedge due to gravity, and evaporated into atmospheric
air. The average Nusselt number was found to decrease as the wedge half-angle increased, primarily because
of an increase in the average wall-interface temperature difference. The mean curvature changed from zero at
the interline to a constant, at a distance approximately three times the adsorbed layer thickness from the wall.
The capillary pressure calculated from first principles was nearly twice as large as that determined from a
semicircular approximation of the mean curvature. We believe that this was partially due to the presence of
the van der Waals attraction near the wall. Downstream from the inlet, both thermocapillary convection and
pressure recovery in the liquid caused the interline to move downward toward the wedge apex and then upward
away from the apex until the piezometric pressure gradient was equal to zero. The locus of liquid dry out points
were estimated based on axial locations where the piezometric pressure gradient was equal to zero; this rep-
resented a point of zero flow in the channel. As expected, the points where dry out occurred, moved closer to
the inlet as the surface mass flux was increased. '

Nomenclature z steps = number of steps in the axial direction

_ . IL v = gradient operator
P o = Vel hlfang

_ priary B = wedge inclination angle with respect to the
E = evaporation number gravity vector
F = surface mass transfer number v = change in surface tension with respect to
G = arc-length function temperature
g B gravity vector L Ar = radial spatial increment
H = mean curvature of the vapor-liquid interface Az — axial spatial increment
h = heat transfer coefficient at a given axial location A _ azimutrl)lal spatial increment
Rove = average heat transfer coefficient 5 — adsorbed 1 al})r er thickness
ng z ﬁ;esrsltt?:;stfeorf :sgf(gclizj;on 8 = unit vector in the radial direction
I'" — identity tensor (?Z = unit vector in the axial direction
] — mass ﬂ)ilx at the interface 0, = unit vector in the azimuthal direction

B L o £ = azimuthal coordinate with an origin at the wall,
k = thermal conductivity in the liquid o« — 8
M - Marapgom number £ = angle associated with the adsorbed layer
M, = magnitude of the normal vector thickness
M; = magnitude of the tangent vector ] = azimuthal spatial coordinate
Zu = Z‘i‘cf‘r‘:a:glggf’;umber K = thermal diffusivity in the liquid
Vlae T Averag . o 7 = dynamic viscosity in the liquid
A = unit normal vector to the interface pointing into n = disjoining pressure

the vapor phase P = density in the liquid

p = pressure .
Pr = Prandtl number 7 = surface tension

B . . A, T = rate of deformation tensor
R = radial location of the vapor-liquid interface & — local contact angle with the wall
R, = gas constant divided by the molecular weight of &

the_vapor . ) Subscripts
r = radial spatial coordinate a = atmospheric conditions
To = interline location at the wedge inlet asat = saturated conditions at atmospheric pressure
T = temperature ) i = vapor (same species as the liquid)
t = unit tangent vector to the interface r = derivative with respect to the radial direction
u = radial velocity z = derivative with respect to the axial direction
v = azimuthal velocity w = wall
] = velocity vector 0 = at the interline
w = axial velocity . 0 = derivative with respect to the azimuthal
z = axial spatial coordinate direction
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Fig. 1 Wedge coordinate system and length scales.

mal technology such as plate evaporators, desalinization heat
exchangers, and heat pipes. In some cases the surface of a
gravity-driven plate evaporator is machined or etched into an
array of parallel V-shaped channels between 10-300 pwm on
a side. The channels prevent the formation of rivulets typical
of evaporating thin films flowing down an inclined flat plate
due to gravity. Rivulets are undesirable because they decrease
the contact area between the liquid and the wall, and thus
prevent the efficient use of available hot wall heat transfer
area for evaporation. The grooved configuration also provides
a larger evaporation surface area than a thin film of liquid,
due to the curvature of the meniscus, while sustaining the
large wall-to-meniscus temperature gradients common to thin
liquid films. For saturated wetting liquids, the grooved con-
figuration also takes advantage of the large heat transfer rates
characterizing evaporation in the submicron layer near the
interline (triple-contact line).

Figure 1 depicts an evaporating meniscus in an isolated V-
shaped channel with a constant surface temperature. The lig-
uid is unsaturated and evaporating into air. & and 3 are mea-
sured with respect to the gravity vector. Liquid enters the top
of the channel at a temperature lower than the liquid satu-
ration temperature. For inclination angles less than 90 deg,
the liquid flows downward due to gravity and a meniscus
develops whether the fluid is heated by the wall or not. The
morphology of the isothermal meniscus, which in this case
serves as an initial condition at the channel entrance, is de-
pendent on the surface forces near the interline and surface
tension forces characterizing the intrinsic meniscus. Wall cool-
ing occurs downstream where liquid evaporates at the inter-
face forcing a liquid temperature gradient between the wall
and the meniscus. The evaporation rate at the interface is
dependent on both the flow conditions in the gas and the
magnitude of the vapor pressure driving force (or concentra-
tion driving force). Evaporation, or wall cooling, subsides
when the partial pressure of the vapor at the interface is equal
to the partial pressure of the vapor in the bulk gas; this negates
the driving force for vapor mass transfer.

Literature Survey

Investigations of the surface wetting and fluid flow in small
capillary grooves-have been conducted by several investiga-
tors. Early contributions were made by Bressler and Wyatt!
who investigated the effects of capillary grooves on surface
wetting in an effort to obtain expressions for predicting the
variations in heat transfer conditions and optimizing groove
designs. Numerical evaluation of the heat transfer rates were
computed for grooves with triangular, semicircular and square
cross sections. As a follow-up to this work, Ayyaswamy et
al.? solved the two-dimensional equations of motion for steady
laminar flow in triangular shaped grooves using Galerkin
boundary methods. Given the liquid channel half-angle and

the contact angle of the shear-free meniscus, relationships for
determining the friction factor coefficient and Reynolds num-
ber (based upon the hydraulic diameter) were identified. The
analytical results were compared with experimental data ob-
tained for channel half-angles ranging from 5 to 60 deg, and
contact angles from 0.1 to the full groove condition. The
analytical results and experimental data exhibited a strong
correlation over the entire range of both channel and contact
angles.

The potential for using small channel devices in electronic
cooling stimulated several studies.?* In the first of these, the
steady-state behavior of a trapezoidal microheat pipe 57-mm
long with a 1-mm? cross section was investigated. The corners
of the trapezoidal cross section served as grooved channels
for the transport of liquid from the condenser to the evapo-
rator. The experimental results were compared with an an-
alytical model and were found to accurately predict the max-
imum heat transport capacity of the pipe. The interest in
developing smaller microheat pipes prompted the study of
Peterson et al.* An experimental investigation was under-
taken to verify the microheat pipe concept for a trapezoidal
pipe with a cross-sectional dimension of 30 wm. The substrate
material was a silicon wafer and the working fluid was meth-
anol. The results showed that the effective thermal conduc-
tivity increased by 25% after the empty pipe was charged with
the methanol working fluid. Although these two studies in-
directly addressed flow in microchannels, questions were raised
concerning the role that the disjoining pressure plays in the
transport of liquid from the condenser to the evaporator,
especially when the cross-sectional dimension is less than
100 pm.

In addition to the aforementioned investigations involving
the shape and distribution of liquid menisci in small capillary
grooves, several investigations have been conducted which
are directly related to thin film evaporation from grooved
surfaces. Edwards et al.> demonstrated that a power-law so-
lution exists for the capillary flow supplying liquid to the tip
of an evaporator fin. This solution indicated that the heat
transfer was limited by the fluid properties alone, and gave
some indication of the magnitude of the heat transfer that
could be accurately predicted for various combinations of
materials. Two more recent investigations have focused spe-
cifically on the evaporation from small triangular micro-
grooves under supersaturated liquid flow conditions.®” These
two investigations developed analytical models for evaluating
and predicting the heat transfer characteristics during film
evaporation from microgroove surfaces. In both cases the flow
was assumed to be driven by capillary pressure due to the
recession of a meniscus into the groove similar to that which
would occur during evaporation. In both cases the application
of interest was heat pipe wicking structures. This work was
later extended, and a correlation between the Nusselt number
and a nondimensional parameter relating the surface and fluid
properties, groove geometry, and disjoining pressure.®” The
results when compared with an experimental study of vapor-
ization from a liquid coolant on a flat microgroove surface
indicated that the disjoining pressure plays a significant role
in the evaporation process and increases in significance as the
diameter of the channels decreases.

While all of the aforementioned investigations have pro-
vided significant insight into the behavior of liquid flow and
evaporation in small channels (most have focused on the in-
trinsic meniscus which is that portion of the meniscus char-
acterized only by surface tension forces), only one study’
addresses the submicron region near the interline where the
solid substrate plays an important role in thin film behavior.
The majority of these studies address liquids which are either
saturated or mildly supersaturated. In this study we have de-
veloped a mathematical model of the extended meniscus in
a V-shaped channel for an unsaturated wetting liquid evap-
orating into air. The formulation of the model accounts for
phenomena in both the intrinsic meniscus and the interline
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region. The following sections provide a detailed description
of the mathematical model including the important assump-
tions, governing equations, boundary and interfacial condi-
tions, scaling, and numerical procedure.

One-Sided Formulation

The mathematical model of the evaporating meniscus de-
veloped in this study applies the so-called one-sided model
used by Burelbach et al.® This approach assumes that the
density, viscosity, and thermal conductivity are much greater
in the liquid phase than in the vapor phase. Furthermore, the
velocity and temperature gradients in the vapor phase are
assumed to be much less than those in the liquid phase. These
assumptions can be applied to interfaces which are evapo-
rating relatively slowly into an unconfined gas phase (i.e.,
open air).

A derivation of the governing transport equations for in-
terfacial problems can be found in a number of reference
books.*'® We have chosen to use the compact vector form of
the governing equations given by Burelbach et al.®; hence,
the remaining discussion of the one-sided formulation follows
this reference closely.

Figure 1 shows the cylindrical coordinate system used to
describe the V-shaped channel. The radial center is located
at the apex of the wedge, while the origin of the azimuthal
angle (6) is placed at the wedge symmetry plane. The axial
direction is perpendicular to the r-@ plane as shown in Fig. 1.
R(0) is the radial location of the meniscus and is a function
of 6. r, is the radial location of the interline at the inlet to
the channel. Note that downstream of the wedge inlet, the
location of the interline can change. An adsorbed layer exists
in the region above the interline whose thickness is dependent
on the disjoining pressure. The magnitude of the disjoining
pressure is a function of the intermolecular forces between
the wall, adsorbed layer, and gas phase. Unless stated other-
wise, the equations developed herein are based on the one-
sided assumption and apply to the bulk liquid phase. Inter-
facial and gas phase variables are given by superscripts (/)
and (g), respectively. In cylindrical coordinates, the outward
normal vector (pointing into the gas phase) and tangent unit
vectors at the interface are

[6(R) + 8,(~R,) + 5.(—RR.)] )

=
Il

1
M,

il

L [BORR) + B(RR) + 8(R) ()

with magnitudes of
M, = (R? + R} + R?R?)?

M; = (4R3R? + R?R? + R3)'?

For steady incompressible flow conditions the Navier-Stokes
equations reduce to

pp-Vi = —VP + uV2 + pg (3)

The continuity and energy equations for the liquid phase are
V-4 =0 4)

¥V-VT = «kV2T 5)

The scalar azimuthal boundary conditions at the symmetry
plane are

Ug = v =wg =Ty =Ry =0

No-slip conditions, a constant wall temperature, and appro-
priate interfacial conditions are imposed at the wall:

0= a, v =0, T=T,
R, = R cot(a); P® — p =1l

The total gas pressure P® is assumed to be constant. The
third condition, which applies to wetting liquids, requires that
the slope of the interface at the interline be equal to the slope
of the wedge wall. The fourth condition given above (capillary
pressure condition) evolves from interface thermodynamics
and can be used to evaluate the adsorbed layer thickness.!'-2?
Further discussion of the capillary pressure azimuthal bound-
ary condition, based on scaling arguments, can be found in
Ref. 20. A jump mass balance at the interface requires that
the liquid and vapor mass flux normal to the interface are
equal:

J = pii = pP90-i ©
Since evaporation occurs in air and the liquid is unsaturated,
p'® is the vapor density which is only a fraction of the total
gas density. The jump energy balance at the interface is
Jhy, + kNT-4 =0 @)
The normal stress jump condition is
[P® — PlI-A-A + 2ur-A-A = 2Ho(T) + 11  (8)
where H is given by
2H = —V-aA ®
The shear stress jump condition is
[P® ~ PlI-A-i + 2urh-t= Vot (10)
The term on the right side accounts for thermocapillary con-

vection (Marangoni effects). The gradient of the surface ten-
sion can be evaluated using

o =0® — y[TO® - T®] (11)

and the chain rule.!*® ¢(® is the surface tension at the bulk
gas temperature 7®. No-slip conditions are assumed to hold
at the interface requiring

~

bt =v@®.¢

Assuming the vapor mass flux is relatively small, equilibrium
conditions can be imposed at the interface making the partial
pressure of the evaporating liquid equal to the saturation
pressure at the interface temperature. This relationship is
given by the Clausius-Clapeyron equation

he |1
P® = P, exp {—Ri [ﬁ - Tl ]} (12)
vap

a.sat

The reference conditions in Eq. (12) are P, and T, ,,. In this
particular study we are not interested in the specific vapor
mass flow mechanism, and therefore, have used a simplified
vapor mass flux condition assuming very low vapor concen-
tration in the bulk gas phase:

h
— m )
I p@R,, T® P (13)
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With the mass transfer coefficient as a parameter, this expres-
sion can be used to vary the magnitude of the vapor mass
flux.

Scaling
Lubrication scales are used to nondimensionalize and fur-
ther reduce the number of terms in the governing equations.
The scaled variables (barred variables) are

7 = ab = Lz =
r = Rr, 6 = ab, z =Lz, a~L
ap ap _ - r? 5
= = = £ == p=Lt_p
u oL a, v oL v, w oL w, o
_ WT. — T®) .
T=T® + (Tw - T(g))T’ J = _.g_’x___).]
ol
_ K
gr - pzr%L gr
[ 5 5
Ll = R = r,R
8o pzr%L 8o> 8 pzr%L 82> Ty
2 -
= E‘;H, o = a(Tp)o
Pry

Substituting these variables into the governing equations,
combining equations, and retaining terms to zeroth order in
the aspect ratio yields the following system of equations:

1

1 . _ 5 -
;(ru)F+a—2fvé + Rw,. =0 14
P.=0 (15)
P; =0 (16)
L. L s = R2(P g 17
7 (W), + — Wes = R*(P; — §.) (17
1 - 1 L
";(I’T)F + 7’ T‘;,; =( (18)
w;=T; = R; = 0, @6=0 (19)
w =0, T =1, R; = aR cot a
P© — p =11, @6=1 (20)

1 a
pP® =G 1 — + 1
(e o)
@r=1 (23)
VR _ o M (a1 a\
o N AT

x (2 RiR: ¢+ | R, + R ) @r=1 (24

s hy, 1 1 o
E"Fe"p{ R [Tw FTLA-D T]} @r=1
(25)

The dimensionless groupings in the above Eqs. (14-25) are
as follows:

Evaporation number

5o CIT, ~ T®]
a*hy,
Prandtl number
Pr = i
K
Capillary number
o=
Cro
Marangoni number
M= roy[T, — T®]
K
Surface mass transfer number
Fe roC,h,.P,
o a’kp®R,,, T®

In this study, a copper/methanol/air system was investigated
with material properties evaluated at room temperature. Nu-
merical values for the various adjustable parameters in the
dimensionless groupings are r, = 100 um, L = 1 em, T, =
323K, T® = 293 K, h,, = 0.1-4.5 kg/m?s, « = 10-30 deg,
B = 80 deg. Material properties were evaluated at the average
temperature between the wall and the bulk gas. Based on the
above parameters, numerical values for the dimensionless
groupings are a = 1072, E = 642, Pr = 5.65, Ca = 1.23 x
1074, M = 5.28 x 10°, and F = 0.00339-0.152.

Momentum Egs. (15) and (16) show that the hydrostatic.
pressure acting in both the radial and azimuthal directions
does not play a significant role in flow behavior. Secondly,
the lubrication approximation points out that flow in the axial
direction predominates in the intrinsic meniscus. Clearly, both
gravity and the dynamic pressure gradient in the axial direc-
tion contribute to the net driving force for fluid flow. When
the total gas pressure is held constant, the liquid pressure will
change axially due to both viscous losses and meniscus atten-
vation caused by evaporation. Obviously, for flow to occur
the combined effects of gravity (g, = g cos B), viscous losses,
and evaporation must produce a negative piezometric pres-
sure gradient [right side of Eq. (17)]. Thus, under steady flow
conditions, the axial location where the piezometric pressure
gradient goes to zero can be used to estimate the liquid dry
out location.

As expected, scaling of the energy equation in the liquid
shows that conduction is the predominate heat transfer mech-
anism. The total heat transfer rate is dependent on the wall
temperature, the magnitude of liquid conduction, the inter-
facial mass flux, and the interfacial surface area.

Numerical Solution

The numerical procedure used to solve Egs. (14-25) in-
volved several steps. Initially, the interface morphology was
determined using the normal stress interfacial condition, Eq.
(23). This was done by reformulating Eq. (23) as a nonlinear
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second-order initial value problem. A change of variables and
reduction of order produced two coupled nonlinear ordinary
differential equations. After linearizing the first-order terms,
the equation set was cast in the following form:

Ry=D 26)
Dy = 47D = D) + 4 @7)
where
$=1-14
A% = [% [ CD( + DY &P - ﬁ)]*

Af =

3 2 02 21)2)3/2 *
[Q+a2‘ L @’Ca(R ;1/511)) (AP—f[)]

The asterisk above refers to a constant evaluated at the pre-
vious iteration. These two equations were solved implicitly
by shooting toward the boundary condition at the symmetry
plane where R; = 0. Bécause the slope at the interline for
wetting liquids is related to the interface via R; = aR, cot
a, the interline location R, could be adjusted until the sym-
metry plane condition was satisfied. For a given capillary
pressure difference, the adsorbed layer thickness above the
interline was determined from Eq. (20). This procedure was
automated using the secant method®® with 10,001 steps to
ensure sufficient spatial resolution near the interline. This
method produced both the interline location and adsorbed
layer thickness at each axial location. The liquid pressure, or
capillary pressure difference, used for this calculation was
determined from a bulk pressure correction expression dis-
cussed later. A similar procedure was used to determine the
capillary pressure at the wedge inlet where the interline lo-
cation was set equal to one. Note that only one unique cap-
illary pressure and adsorbed layer thickness satisfied the
boundary conditions at each axial location.

The diffusion terms in the axial momentum equation (Pois-
son equation) and energy equation (Laplace equation) were
discretized using centered finite differencing, while upwind
finite differencing was applied to the axial pressure gradient.
A line-by-line method using a tridiagonal matrix algorithm
(TDMA) was employed to calculate numerical values of the
axial velocity and temperature. Centered finite differences
were also applied to the boundary and interfacial conditions.
This type of procedure can be found in most standard text-
books on numerical methods (i.e., Refs. 21 and 23).

The pressure at any cross section was evaluated using a
pressure correction similar to that found in the SIMPLE al-
gorithm of Patankar.?’ The pressure correction was based on
the integral form of the continuity equation derived by in-
tegrating Eq. (14) over the entire cross-sectional domain. Ap-
plication of the Leibnitz rule in combination with the kine-
matic condition given by Eq. (21) produced

1 1 . ) 1 _ 1 ) 172 ) )
%ffmwmme:—ﬁ (R2+—R%, Jdd
zJo Jo PrJo

(28)

The integrals in this expression were evaluated using Simp-
son’s integration, while the differential term was discretized
using upwind finite differencing. The pressure correction was
found to be related to the velocity by

R (n+1)]2
Wil = w'(ngrl) + M
o J Azb,

AP+t (29)

where

2FA6 247
T AF a?FAf

Indices written as subscripts define the cross-sectional loca-
tion, whereas indices written as superscripts specify the axial
location. Indices with parentheses refer to values at the pre-
vious iteration. Combining the discretized form of Eq. (28)
with Eq. (29) yielded the pressure upgrade (AP”*!) as a func-
tion of the integrated velocity distribution.

The discretized equation set was solved on an IBM RS-
6000 model 320H minicomputer. Iteration continued at each
cross-sectional location until all dependent variables con-
verged to a relative error less than 10~>. The discretized form
of the integral continuity equation was satisfied to a relative
error of less than 10=3. An 80 x 80 cross-sectional grid with
0.02 increments in the axial direction produced solutions ac-
curate to within 1%. Optimizing a relaxation factor multiply-
ing the pressure upgrade term significantly reduced the overall
run time. Run times varied between 1-4 h, depending on the
parameter values.

Results and Discussion

In this study, we are interested in examining the effect
wedge half-angle and vapor mass flux have on heat transfer
(Nusselt number), interface morphology, axial liquid pressure
gradient, and liquid dry out location. As mentioned earlier,
a copper/methanol/air system was considered with material
properties evaluated at room temperature.

Numerically generated heat transfer data were compiled in
terms of an average Nusselt number defined as

Nty = (hivero/k) (30)

The axially averaged heat transfer coefficient 4,,. found in
this expression is

Roe = [mips h(z,)z steps]
where
n(z) = {rﬁ fo 1 J(8, £)G(6) dd / L 1 [1 — TW]G(B) dé}

h(2) is the heat transfer coefficient at a given axial location.
The numerator in this expression is the average surface heat
flux, whereas the denominator is the average temperature
difference between the wall and the interface. The function
G(6) df is the differential meniscus cross-sectional arc length
given by

G(6) d6 = [R*() + (/a®)RYH)]"> db

Other forms of the Nusselt number based on various types of
averaging and the temperature difference between the wall
and the cross-sectional bulk liquid temperature were also cal-
culated. The form given above was most convenient from a
computational point of view, requiring less grid points for
computational accuracy. Also, the trends exhibited by the
various types of Nusselt numbers were similar in nature.
Figure 2 shows the Nusselt number as a function of the
wedge half-angle. For a given wedge half-angle, the Nusselt
number was found to be nearly independent of F. Therefore,
an increase in the average surface heat flux is compensated
by an equivalent increase in the average temperature differ-
ence between the wall and the interface. All of the numerical
data fell within 2% of the curve given in Fig. 2. Furthermore,
the local Nusselt number changed very little axially, because
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Fig. 2 Average Nusselt number as a function of wedge half-angle.
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Fig. 3 Normalized meniscus profiles as functions of the wedge half-
angle.

the intrinsic meniscus profile changed very little axially. The
figure shows that the Nusselt number decreases exponentially
as the wedge half-angle increases. This occurs because the
meniscus heat flux is nearly fixed for a constant heat flux
number, while the average temperature difference increases
as the wedge half-angle increases. Larger average tempera-
ture differences (or lower interfacial temperatures) result be-
cause the meniscus arc length (or surface area) increases for
larger half-angles. This argument is supported by Fig. 3 which
shows the normalized meniscus profiles as a function of the
wedge half-angle. Note that the actual azimuthal coordinate
is # = «f; thus @ for « = 10 deg is a factor of three less than
that for @ = 30 deg. The increase in meniscus arc length also
provides a larger cross-sectional area which can sustain larger
mass flow rates.

Figure 4 illustrates the change in the mean curvature profile
in the transition region between the interline and intrinsic
meniscus for the various wedge half-angles. The mean cur-
vature is equal to zero at the interline as mandated by the
wall boundary condition, and increases asymptotically to a
constant equal to one-half the capillary pressure. Note that
the zero abscissa in the figure represents the edge of the
interline, or stationary adsorbed layer, whose thickness is also

4
[
3
N
i
T2k
1r
E a=10° a=15° a=20° a=25° a=30°
e} A [ A -
0 1 2 3 4 5 6 7 8 9 10

(1-8)x10*

Fig. 4 Mean curvature in the transition region between the interline
and the intrinsic meniscus. Note that H = r,H where r, = 10~% m.
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Fig. 5 Layer thickness at the edge of the intrinsic meniscus and
adsorbed layer thickness as functions of the wedge half-angle. Note
that 6 = &/r,, where r, = 107* m and 6 = 0(10~% m).

dependent on the capillary pressure in the intrinsic meniscus.
At first glance it appears as though the transition region be-
tween the interline and the intrinsic meniscus moves away
from the wall as the wedge half-angle decreases. However,
the apparent trend shown by the figure is actually disguised
by the normalized abscissa.

This point is clarified in Fig. 5, which shows the film thick-
ness at the edge of the intrinsic meniscus where the mean
curvature reaches 95% of its asymptotic value (dvse). The
film thickness is calculated from § = R[a(l — 8) + &)
which includes the adsorbed layer thickness, §, = R,E,.
8, is also shown in Fig. 5 for reference purposes. The figure
indicates that the transition region moves outward away from
the wall as the wedge half-angle increases. This occurs for
two reasons. The first reason is because the small relative
slope of a large half-arigle causes the thin film to sustain itself
longer. This behavior can be explained more clearly by con-
sidering a wedge half-angle of nearly 90 deg, which closely
approximates a flat plate. In this case, the meniscus simply
becomes a thin film of almost zero mean curvature, and the
disjoining pressure plays an important role over the entire
film domain. Although this example represents an extreme
case, it demonstrates how the thin film is sustained by in-
creasing the wedge half-angle. The second reason why the
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transition region moves away from the wall is because the
adsorbed layer above the interline increases as the wedge half-
angle increases. This is explicitly shown by the lower curve
in Fig. 5. Dividing the corresponding points for &4, by &,
and averaging, produces nearly a constant film thickness ratio,
namely §ys/8o = 2.80 = 0.06. Therefore, in all cases con-
sidered, the disjoining pressure can be neglected for a film
thickness greater than three times the adsorbed layer thick-
ness. This bears sharp contrast to the results of Swanson and
Herdt'¢ for a meniscus in a capillary tube. Their results showed
that the mean curvature was asymptotic to a constant beyond
a film thickness of approximately 10 times the adsorbed layer
thickness. We believe this difference in asymptotic behavior
is primarily geometrical in nature. It is also important to note
that a retarded form of the disjoining pressure, which is more
realistic than the nonretarded form used in this article, will
reduce the magnitude of the disjoining pressure even further.
This, in effect, will shrink the transition region between the
intrinsic meniscus and interline further and expand the do-
main of the intrinsic meniscus.

Figure 6 compares the actual dimensionless capillary pres-
sure in the intrinsic meniscus, 2H/Ca [calculated using Eq.
(23)], with an approximate value obtained by assuming a sem-
icircular meniscus with a zero adsorbed layer thickness and
tangent line at the wall (1/Ca tan «). The approximate form
underpredicts the actual capillary pressure by nearly a factor
of 2. We believe this discrepancy is due to the presence of
the disjoining pressure (van der Waals attraction) near the
wall. The van der Waals attraction induces a decrease in mean
curvature as the meniscus approaches the wall. Moving away
from the wall, the van der Walls attraction forces the meniscus
to curve toward the plane of symmetry more abruptly, thereby
producing a larger mean curvature (or capillary pressure) in
the intrinsic meniscus. Therefore, using a simple semicircular
approximation to the mean curvature in V-shaped channels
can result in a severe deviation from reality. One remedy may
be to use the semicircular approximation with a radius of
curvature that matches the disjoining pressure boundary con-
dition at the interline, i.e., Eq. (20). This was done previ-
ously in an analytical model of triangular-shaped channels.®
Using this approximation, their semiempirical model gener-
ated a minimum film thickness on the order of 2 um, which
is at least an order of magnitude greater than a film thickness
of 0.05 um (500 A), where the van der Waals attraction is
minimal. This inconsistency may explain the sharp discrep-
ancies between typical nonretarded dispersion constants and
those determined semiempirically by Xu and Carey.® The
reader should note that our intent here is not to discredit the
application of matching the mean curvature to a disjoining
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Fig. 6 Exact and approximate forms of the dimensionless capillary
pressure difference in the intrinsic meniscus.

pressure in the transition region. We believe that the form of
the normal stress interfacial condition used for the matching
procedure should be based on first principles, i.e., Eq. (8).%-2!

As stated earlier, no significant change in the intrinsic me-
niscus profile was observed, regardless of the evaporation
rate. This seems somewhat counterintuitive until one looks
at the effect of thermocapillary convection and pressure re-
covery in the liquid phase due to evaporation. The ensuing
discussion is based on an examination of the global charac-
teristics of the numerical data; figures depicting these char-
acteristics will immediately follow the discussion.

The piezometric pressure is composed of two terms: 1) the
dynamic pressure and 2) the gravitational body force. Be-
tween the inlet and the first spatial step in the z direction,
the flow changed from a nonevaporating state to an evapo-
rating state. This caused significant thermocapillary convec-
tion at the first step downstream from the inlet, primarily
because the Marangoni number was large (M = 5.28 x 10%).
The thermocapillary effects generated a surface velocity which
flowed in the opposite direction (from cold to hot) of the bulk
flow. The magnitude of the surface velocity also increased as
the evaporation rate increased. In order to satisfy mass con-
tinuity, the dynamic axial pressure gradient had to compen-
sate for the thermocapillary effects. Thus, in all cases a large
negative axial pressure gradient was observed near the wedge
entrance. After a few steps in the axial direction, the surface
temperature gradient was sufficiently small so that the ther-
mocapillary effects essentially vanished. It should be noted
that the scaled equation set in this study may not adequately
characterize phenomena at the inlet, because the flow be-
comes thermally fully developed over a very short distance:
a local aspect ratio (z/r,) on the order of one. Some of the
terms neglected in this study may be important near the inlet
where a significant axial temperature gradient exists. Re-
gardless of the inlet condition, we found that a few steps
downstream of the inlet, the velocity, temperature, and pres-
sure did not change significantly when the step size in the
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Fig. 7 Interline location as a function of axial position for a wedge
half-angle of 30 deg.
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Fig. 9 Estimate of the locus of liquid dry out points as a function of
the vapor mass flux number for various wedge half-angles.

axial direction was reduced. Therefore, we are confident that
our results are realistic a few steps downstream of the inlet.

The numerical data also showed that downstream from the
entrance region, the dynamic pressure gradient eventually
changed sign (from negative to positive) due to pressure re-
covery in the liquid. Beyond this point, the dynamic pressure
gradient opposed the gravitational body force and increased
steadily in the axial direction until its magnitude was equal
to that of the gravitational body force. Since the driving force
for flow subsides when the piezometric pressure gradient is
equal to zero, we defined this as a liquid dry out condition.

The effects of both thermocapillary convection and pressure
_recovery can be seen very clearly in Fig. 7, which shows the
interline position relative to the inlet position (R, = 1) as a
function of axial location for a wedge half-angle of 30 deg.
In all cases the interline immediately recedes because of the
decrease in liquid pressure due to thermocapillary effects. A
decrease in liquid pressure corresponds to an increase in cap-
illary pressure which pushes the meniscus into the wedge. As
the mass flux number increases, the interline lowers further
into the wedge near the inlet due to an increase in thermo-

capillary convection. The magnitude of the mass flux number
also dictates the amount of pressure recovery in the liquid (or
decrease in capillary pressure), which causes the interline to
move outward away from the apex. Although the initial in-
terline depression is greater for larger mass flux numbers, the
interline rises more rapidly downstream due to the larger
pressure recovery. Because the interline continues to rise until
the piezometric pressure gradient is equal to zero, we expect
an extremely sharp axial decline in the meniscus occurs near
the dry out point. Because of the large axial interfacial gra-
dient, accurately capturing specific interface morphological
behavior in this region is beyond the scope of the mathe-
matical model developed in this study.

The piezometric pressure gradient profiles associated with
a wedge half-angle of 30 deg are plotted in Fig. 8. The large
negative piezometric pressure gradients caused by thermo-
capillary effects near the entrance are not shown in the figure.
In all cases, beyond the first axial step, the piezometric pres-
sure gradient decreases linearly downstream from the inlet.
The slope of the pressure gradient also increases in magnitude
as the mass flux number increases. This occurs because more
flow is necessary to feed a larger surface evaporation rate.
Note that the lines intersecting the abscissa denote axial dry
out points.

The locus of dry out points for various wedge half-angles
are plotted in Fig. 9. Recall that these points are only ap-
proximations because interfacial phenomena in this region are
not completely described by the mathematical model. The
figure shows that the dry out location moves closer to the
inlet as the surface mass flux increases. As the wedge half-
angle increases, the dry out point moves further downstream,
because the increase in heat transfer surface area does not
sufficiently compensate for the larger mass flow rates. For all
wedge half-angles, the dry out location is asymptotic to infinity
as the mass flux number goes to zero, which is expected for
nonevaporating menisci.

Conclusions

A mathematical model of the evaporating extended me-
niscus in a V-shaped channel was developed to investigate the
effect that wedge half-angle and vapor mass transfer have on
meniscus morphology, fluid flow, and heat transfer. The Na-
vier-Stokes and energy equations, as well as the interfacial
conditions were scaled using the lubrication approximation.
The one-sided formulation was applied to the gas phase under
the assumption that the total pressure in the gas phase was
constant. The scaled normal stress interfacial condition was
also examined in detail to compare the magnitudes of the
surface tension forces and van der Waals forces, both near
the interline and at the edge of the intrinsic meniscus. The
most significant results can be summarized as follows:

1) The average Nusselt number decreased as the wedge
half-angle increased.

2) Aside from the dry out region, the shape of the intrinsic
meniscus changed very little in the axial direction.

3) The mean curvature changed from zero at the interline
to a constant at a distance approximately three times the
adsorbed layer thickness from the wall. ‘

4) The capillary pressure calculated from first principles
was nearly twice as large as that determined from a semicir-
cular approximation of the mean curvature.

5) Both thermocapillary convection and pressure recovery
in the liquid caused the interline to initially move downward
toward the wedge apex, and then upward away from the apex
until the piezometric pressure was equal to zero.

6) The points where dry out occurred moved toward the
inlet as the surface mass flux was increased.

It is apparent that the model developed in this article can
be modified for V-shaped channels which are mildly super-
saturated and subjected to an axial pressure gradient in the
vapor phase (i.e., microheat pipes). The axial pressure gra-
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dient in the vapor phase will increase toward the evaporator
section and will push the meniscus further into the groove.
The resulting increase in the capillary pressure will increase
the liquid flow toward the evaporator. Under these condi-
tions, the liquid phase equations also have to be scaled in
such a way to retain significant terms in the radial momentum
equation. It is well known that for mildly supersaturated liq-
uids, the maximum surface heat flux occurs in the transition
region between the interline and the intrinsic meniscus. In
this region, the magnitude of the velocity in the radial direc-
tion will be on the same order as that in the axial direction.
Both viscous losses and variable surface evaporation in the
radial direction will significantly affect the radial pressure
gradient and the cross-sectional meniscus morphology. We
are currently developing a model of the microheat pipe that
accounts for these effects.

Essentially, the fluid will be pumped axially from the con-
denser to. the evaporator in the intrinsic meniscus. Evapo-
ration or condensation will occur both on the intrinsic me-
niscus as well as on the thin film near the interline. Because
the maximum heat flux will occur in the interline region, fluid
will undoubtedly be pumped into that region. The question
is how much. To some degree, the small surface area in the
interline region negates the high-heat flux in this region; con-
versely, the large surface area in the intrinsic meniscus pro-
motes a lower heat flux. Understanding which region domi-
nates is left to a future study.
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